Skip to content

API Reference

Manage and compare multiple PHOTONAI analyses within a single project folder.

This class helps you: - create and register new analyses, - run PHOTONAI hyperpipes on stored data, - run permutation tests (locally or on SLURM), - aggregate permutation results, - compute permutation-based p-values, and - statistically compare multiple analyses (Nadeau–Bengio and permutation-based).

Source code in photonai_projects/project.py
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
class PhotonaiProject:
    """
    Manage and compare multiple PHOTONAI analyses within a single project folder.

    This class helps you:
    - create and register new analyses,
    - run PHOTONAI hyperpipes on stored data,
    - run permutation tests (locally or on SLURM),
    - aggregate permutation results,
    - compute permutation-based p-values, and
    - statistically compare multiple analyses (Nadeau–Bengio and permutation-based).
    """

    def __init__(
        self,
        project_folder: str,
        feature_importances: bool = False,
    ):
        """
        Initialize a PHOTONAI project.

        Parameters
        ----------
        project_folder : str
            Path to the root folder of the project. All analyses and results are
            stored inside this folder.
        feature_importances : bool, optional
            Whether to compute feature importances (not yet used in this class),
            by default False.
        """
        self.project_folder = project_folder
        self.feature_importances = feature_importances
        self.reporter = Reporter(self.project_folder)
        os.makedirs(self.project_folder, exist_ok=True)

    def run(self, name: str):
        """
        Run a PHOTONAI analysis that has already been added to the project.

        This will:
        - load the hyperpipe constructor from the analysis folder,
        - load the stored data `X.npy` and `y.npy`,
        - fit the hyperpipe, and
        - write PHOTONAI results to the analysis folder.

        Parameters
        ----------
        name : str
            Name of the analysis (subfolder of `project_folder`).

        Returns
        -------
        Hyperpipe
            The fitted PHOTONAI hyperpipe instance.

        Raises
        ------
        ValueError
            If the analysis folder does not exist in the project folder.
        """
        # check that analysis folder exists
        if name not in os.listdir(self.project_folder):
            raise ValueError(
                f"Analysis {name} not found in project folder {self.project_folder}"
            )

        analysis_folder = os.path.join(self.project_folder, name)
        data_folder = os.path.join(analysis_folder, "data")

        pipe = self._load_hyperpipe(analysis_folder, name)
        pipe.output_settings.set_project_folder(analysis_folder)
        pipe.output_settings.set_log_file()
        pipe.name = name
        pipe.project_folder = analysis_folder

        # load data
        X = np.load(os.path.join(data_folder, "X.npy"))
        y = np.load(os.path.join(data_folder, "y.npy"))

        pipe.fit(X, y)

        # if you want to use feature_importances later, you can hook it here
        # if self.feature_importances:
        #     ...

        return pipe

    @staticmethod
    def _load_hyperpipe(analysis_folder: str, name: str, perm_run: bool = False):
        """
        Load and instantiate the hyperpipe constructor for a given analysis.

        The analysis folder must contain:
        - ``hyperpipe_meta.json`` with the key ``"name_hyperpipe_constructor"``.
        - ``hyperpipe_constructor.py`` defining that constructor.

        Parameters
        ----------
        analysis_folder : str
            Path to the analysis folder.
        name : str
            Name of the analysis (used to uniquely name the imported module).
        perm_run : bool, optional
            If True, reduce verbosity of the pipeline (for permutation runs),
            by default False.

        Returns
        -------
        Hyperpipe
            Instantiated PHOTONAI hyperpipe.

        Raises
        ------
        FileNotFoundError
            If required metadata or constructor files are missing.
        KeyError
            If the constructor name is not found in the metadata file.
        AttributeError
            If the constructor function is not found in the constructor module.
        """
        # ------------------------------------------------------------------
        # LOAD HYPERPIPE CONSTRUCTOR FROM HYPERPIPE SCRIPT
        # ------------------------------------------------------------------

        # 1) read metadata to get the constructor function name
        meta_path = os.path.join(analysis_folder, "hyperpipe_meta.json")
        if not os.path.isfile(meta_path):
            raise FileNotFoundError(
                f"No 'hyperpipe_meta.json' found for analysis '{name}' at {meta_path}. "
                f"Did you create this analysis with 'add'?"
            )

        with open(meta_path, "r") as f:
            meta = json.load(f)

        constructor_name = meta.get("name_hyperpipe_constructor", None)
        if constructor_name is None:
            raise KeyError(f"'name_hyperpipe_constructor' not found in {meta_path}")

        # 2) load the hyperpipe_constructor.py as a module
        module_path = os.path.join(analysis_folder, "hyperpipe_constructor.py")
        if not os.path.isfile(module_path):
            raise FileNotFoundError(
                f"No 'hyperpipe_constructor.py' found for analysis '{name}' at {module_path}"
            )

        spec = importlib.util.spec_from_file_location(
            f"hyperpipe_constructor_{name}", module_path
        )
        module = importlib.util.module_from_spec(spec)
        sys.modules[spec.name] = module
        spec.loader.exec_module(module)

        if not hasattr(module, constructor_name):
            raise AttributeError(f"Function '{constructor_name}' not found in {module_path}")

        hyperpipe_constructor = getattr(module, constructor_name)

        # 3) build and run the Hyperpipe
        pipe = hyperpipe_constructor()  # adapt if your constructor needs arguments
        if perm_run:
            pipe.verbosity = -1
        return pipe

    def add(
        self,
        name: str,
        X: np.ndarray,
        y: np.ndarray,
        hyperpipe_script: str,
        name_hyperpipe_constructor: str,
        **kwargs,
    ):
        """
        Register a new analysis in the project.

        This will:
        - create an analysis subfolder in ``project_folder``,
        - save `X` and `y` as NumPy arrays,
        - copy the hyperpipe script into the analysis folder, and
        - write ``hyperpipe_meta.json`` with the constructor function name.

        Parameters
        ----------
        name : str
            Name of the analysis (subfolder name).
        X : np.ndarray
            Feature matrix with shape (n_samples, n_features).
        y : np.ndarray
            Target vector with shape (n_samples,).
        hyperpipe_script : str
            Path to the Python script that defines the hyperpipe constructor.
        name_hyperpipe_constructor : str
            Name of the hyperpipe constructor function inside `hyperpipe_script`.
        **kwargs :
            Additional keyword arguments (currently unused, reserved for future use).

        Raises
        ------
        ValueError
            If `hyperpipe_script` or `name_hyperpipe_constructor` are not provided.
        """
        if hyperpipe_script is None:
            raise ValueError("hyperpipe_script must be provided in add.")
        if name_hyperpipe_constructor is None:
            raise ValueError("name_hyperpipe_constructor must be provided in add.")

        # create directories for analysis and data
        analysis_folder = os.path.join(self.project_folder, name)
        os.makedirs(analysis_folder, exist_ok=True)
        os.makedirs(os.path.join(analysis_folder, "data"), exist_ok=True)

        # save data to numpy array
        np.save(os.path.join(analysis_folder, "data", "X.npy"), X)
        np.save(os.path.join(analysis_folder, "data", "y.npy"), y)

        # copy script that contains the hyperpipe definition
        shutil.copyfile(
            hyperpipe_script,
            os.path.join(analysis_folder, "hyperpipe_constructor.py"),
        )

        # save metadata (constructor function name etc.)
        meta = {
            "name_hyperpipe_constructor": name_hyperpipe_constructor
            # you could add more fields here (e.g. timestamp, description, etc.)
        }
        meta_path = os.path.join(analysis_folder, "hyperpipe_meta.json")
        with open(meta_path, "w") as f:
            json.dump(meta, f, indent=2)

    def list_analyses(self) -> None:
        """
        Print a list of all analyses available in the project folder.

        The function scans the project folder for subdirectories and prints them
        as available analyses.
        """
        analyses = [
            item
            for item in os.listdir(self.project_folder)
            if os.path.isdir(os.path.join(self.project_folder, item))
        ]
        print("Available PHOTONAI analyses are:")
        for analysis in analyses:
            print(f"  - {analysis}")

    def run_permutation_test(
        self,
        name: str,
        n_perms: int = 1000,
        random_state: int = 15,
        overwrite: bool = False,
    ) -> None:
        """
        Run a local permutation test for a given analysis.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int, optional
            Total number of permutation runs, by default 1000.
        random_state : int, optional
            Base random state for generating permutations, by default 15.
        overwrite : bool, optional
            If True, overwrite existing permutation results. If False,
            skip permutations that already have results, by default False.
        """
        perm_runs = range(n_perms)
        self._run_permutation_test(
            name=name,
            random_state=random_state,
            n_perms=n_perms,
            overwrite=overwrite,
            perm_runs=perm_runs,
        )

    def check_permutation_test(
        self,
        name: str,
        n_perms: int = 1000,
    ):
        """
        Check which permutation runs have a stored PHOTONAI results file.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int, optional
            Expected number of permutation runs, by default 1000.

        Returns
        -------
        list of int
            Sorted list of permutation run indices that were found.
        list of int
            Sorted list of permutation run indices that are missing.
        """
        perm_runs = range(n_perms)
        perm_folder = Path(self.project_folder) / name / "permutations"

        found_runs = [
            int(folder.name)
            for folder in perm_folder.iterdir()
            if folder.is_dir() and (folder / "photonai_results.json").exists()
        ]
        missing_runs = sorted(set(perm_runs) - set(found_runs))
        print(
            f"Found {len(found_runs)} permutation runs, {len(missing_runs)} are missing."
        )
        return sorted(found_runs), missing_runs

    def _load_true_fold_results(self, name: str) -> pd.DataFrame:
        """
        Load per-outer-fold performance metrics for an analysis.

        Parameters
        ----------
        name : str
            Name of the analysis.

        Returns
        -------
        pandas.DataFrame
            DataFrame where rows correspond to outer folds and columns to metrics.

        Raises
        ------
        FileNotFoundError
            If no PHOTONAI run can be found for the given analysis.
        """
        photonai_folder = find_latest_photonai_run(Path(self.project_folder) / name)
        if photonai_folder is None:
            raise FileNotFoundError(
                f"No PHOTONAI run found for analysis {name} in {self.project_folder}"
            )

        handler = ResultsHandler()
        handler.load_from_file(str(Path(photonai_folder) / "photonai_results.json"))
        return pd.DataFrame(handler.get_performance_outer_folds())

    def _load_true_results(self, name: str) -> pd.Series:
        """
        Load mean performance metrics across outer folds for an analysis.

        Parameters
        ----------
        name : str
            Name of the analysis.

        Returns
        -------
        pandas.Series
            Series of mean metric values indexed by metric name.
        """
        folds_df = self._load_true_fold_results(name)
        return folds_df.mean(axis=0)

    def _ensure_and_load_permutation_results(
        self,
        name: str,
        n_perms: int = 1000,
    ) -> pd.DataFrame:
        """
        Ensure that aggregated permutation results exist and load them.

        If ``permutation_results.csv`` is missing, it is created by calling
        :meth:`aggregate_permutation_test`.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int, optional
            Number of permutations expected, by default 1000.

        Returns
        -------
        pandas.DataFrame
            DataFrame containing aggregated permutation results with a ``run`` column.
        """
        perm_results_file = Path(self.project_folder) / name / "permutation_results.csv"
        if not perm_results_file.exists():
            self.aggregate_permutation_test(name, n_perms)
        return pd.read_csv(perm_results_file)

    # -------------------------------------------------
    # Permutation aggregation / p-values
    # -------------------------------------------------
    def aggregate_permutation_test(self, name: str, n_perms: int = 1000) -> None:
        """
        Aggregate results from individual permutation runs into a single CSV file.

        This function:
        - collects mean outer-fold metrics for each permutation run,
        - ensures that all permutation indices `0..n_perms-1` are represented,
        - fills missing values with ±∞ depending on whether higher is better, and
        - writes the result to ``permutation_results.csv`` in the analysis folder.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int, optional
            Number of permutation runs, by default 1000.
        """
        perm_folder = Path(self.project_folder) / name / "permutations"
        valid_runs, missing_runs = self.check_permutation_test(name, n_perms)

        outer_folds_metrics = []
        for valid_run in valid_runs:
            print(f"Aggregating results for permutation run {valid_run + 1}/{n_perms}")
            handler = ResultsHandler()
            handler.load_from_file(
                str(perm_folder / str(valid_run) / "photonai_results.json")
            )
            mean_metrics = pd.DataFrame(
                handler.get_performance_outer_folds()
            ).mean(axis=0)
            mean_metrics["run"] = valid_run
            outer_folds_metrics.append(mean_metrics)

        perm_results = pd.DataFrame(outer_folds_metrics)

        # Ensure all runs 0..n_perms-1 are represented
        df_perm_index = pd.DataFrame(
            np.arange(n_perms), columns=["run"], index=np.arange(n_perms)
        )
        perm_results = pd.merge(df_perm_index, perm_results, on="run", how="left")

        for metric in list(perm_results.keys()):
            if metric == "run":
                continue
            greater_is_better = Scorer.greater_is_better_distinction(metric)
            if greater_is_better:
                perm_results[metric] = perm_results[metric].fillna(np.inf)
            else:
                perm_results[metric] = perm_results[metric].fillna(-np.inf)

        perm_results.to_csv(
            Path(self.project_folder) / name / "permutation_results.csv", index=False
        )

    def calculate_permutation_p_values(
        self,
        name: str,
        n_perms: int = 1000,
    ) -> None:
        """
        Compute permutation-based p-values for a given analysis.

        For each metric, this function compares the true mean performance to the
        distribution of permutation results and computes a one-sided p-value
        using the standard (k+1)/(n_perms+1) formulation.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int, optional
            Number of permutation runs, by default 1000.
        """
        true_results = self._load_true_results(name)
        perm_results = self._ensure_and_load_permutation_results(name, n_perms)

        p_values: Dict[str, float] = {}
        for metric in list(true_results.keys()):
            greater_is_better = Scorer.greater_is_better_distinction(metric)
            current_perm_results = np.asarray(perm_results[metric], dtype=float)

            if greater_is_better:
                current_perm_results[np.isnan(current_perm_results)] = np.inf
                p_values[metric] = (
                    np.sum(true_results[metric] < current_perm_results) + 1
                ) / (n_perms + 1)
            else:
                current_perm_results[np.isnan(current_perm_results)] = -np.inf
                p_values[metric] = (
                    np.sum(true_results[metric] > current_perm_results) + 1
                ) / (n_perms + 1)

            n_valid = n_perms - np.sum(np.isinf(current_perm_results))
            print(
                f"p-value for {metric}: {p_values[metric]} "
                f"(based on n={n_valid} valid permutations)"
            )

        pd.DataFrame(p_values, index=[0]).to_csv(
            Path(self.project_folder) / name / "permutation_p_values.csv",
            index=False,
        )

    # -------------------------------------------------
    # Nadeau–Bengio helper
    # -------------------------------------------------
    @staticmethod
    def _nadeau_bengio_p_value(
        diffs: np.ndarray,
        n_train: int,
        n_test: int,
    ) -> Tuple[float, float]:
        """
        Two-sided Nadeau & Bengio corrected resampled t-test.

        Parameters
        ----------
        diffs : np.ndarray
            Array of per-fold score differences (analysis2 - analysis1).
        n_train : int
            Number of training samples used in each resample.
        n_test : int
            Number of test samples used in each resample.

        Returns
        -------
        float
            Two-sided p-value of the test.
        float
            t-statistic of the corrected t-test.

        Notes
        -----
        The corrected variance is computed as:

        .. math::

            \\text{Var}_c = \\left(\\frac{1}{k} + \\frac{n_{test}}{n_{train}}\\right) s^2
        """
        diffs = np.asarray(diffs, dtype=float)
        k = len(diffs)
        if k < 2:
            return 1.0, 0.0  # not enough folds

        mean_diff = np.mean(diffs)
        var_diff = np.var(diffs, ddof=1)
        rho = n_test / n_train
        corrected_var = (1.0 / k + rho) * var_diff
        if corrected_var <= 0:
            return 1.0, 0.0

        t_stat = mean_diff / np.sqrt(corrected_var)
        df = k - 1

        # two-sided p-value
        p_value = 2 * (1 - stats.t.cdf(abs(t_stat), df))
        return p_value, t_stat

    # -------------------------------------------------
    # Comparison of two analyses
    # -------------------------------------------------
    def compare_analyses(
        self,
        first_analysis: str,
        second_analysis: str,
        method: Literal["nadeau-bengio", "permutation"] = "nadeau-bengio",
        metric: str | None = None,
        n_perms: int = 1000,
        n_train: int | None = None,
        n_test: int | None = None,
        print_report: bool = True,
    ) -> pd.DataFrame:
        """
        Compare two analyses using statistical tests.

        You can choose between:
        - Nadeau–Bengio corrected t-test on outer-fold scores, or
        - permutation-based null distribution of performance differences.

        Parameters
        ----------
        first_analysis : str
            Name of the first analysis.
        second_analysis : str
            Name of the second analysis.
        method : {"nadeau-bengio", "permutation"}, optional
            Statistical comparison method, by default "nadeau-bengio".
        metric : str or None, optional
            If given, only compare this metric. If None, compare all metrics
            common to both analyses, by default None.
        n_perms : int, optional
            Number of permutation runs (only for permutation-based comparison),
            by default 1000.
        n_train : int or None, optional
            Number of training samples used during cross-validation (required
            for Nadeau–Bengio), by default None.
        n_test : int or None, optional
            Number of test samples used during cross-validation (required
            for Nadeau–Bengio), by default None.
        print_report : bool, optional
            If True, print a formatted comparison report, by default True.

        Returns
        -------
        pandas.DataFrame
            DataFrame indexed by metric, containing columns such as:
            ``p_value``, ``effect``, and method-specific fields (e.g. ``t_stat``,
            ``n_folds`` or ``n_valid_perms``).

        Raises
        ------
        ValueError
            If an invalid method is passed or required parameters are missing.
        """
        valid_methods = {"nadeau-bengio", "permutation"}
        if method not in valid_methods:
            raise ValueError(
                f"Invalid method '{method}'. Valid options are: {valid_methods}"
            )

        results: list[dict] = []

        # ---------------- permutation-based comparison ----------------
        if method == "permutation":
            # Load true and permutation results for both analyses
            true1 = self._load_true_results(first_analysis)
            perm1 = self._ensure_and_load_permutation_results(
                first_analysis, n_perms
            )

            true2 = self._load_true_results(second_analysis)
            perm2 = self._ensure_and_load_permutation_results(
                second_analysis, n_perms
            )

            # sanity check: runs aligned
            if not np.array_equal(perm1["run"].values, perm2["run"].values):
                raise ValueError(
                    "Permutation indices (run column) do not match between analyses."
                )

            if metric is None:
                metrics = set(true1.index).intersection(true2.index)
            else:
                metrics = [metric]
            for metric in metrics:
                greater_is_better = Scorer.greater_is_better_distinction(metric)

                # true difference: analysis2 - analysis1
                true_diff = float(true2[metric] - true1[metric])

                # permutation differences per run
                perm_diff = (
                    np.asarray(perm2[metric], dtype=float)
                    - np.asarray(perm1[metric], dtype=float)
                )

                if greater_is_better:
                    perm_diff[np.isnan(perm_diff)] = np.inf
                    p_val = (np.sum(true_diff < perm_diff) + 1) / (n_perms + 1)
                else:
                    perm_diff[np.isnan(perm_diff)] = -np.inf
                    p_val = (np.sum(true_diff > perm_diff) + 1) / (n_perms + 1)

                n_valid = n_perms - np.sum(np.isinf(perm_diff))
                print(
                    f"[permutation] {metric}: p={p_val}, "
                    f"true_diff={true_diff} (n_valid={n_valid})"
                )

                results.append(
                    {
                        "metric": metric,
                        "method": "permutation",
                        "p_value": p_val,
                        "effect": true_diff,  # analysis2 - analysis1
                        "n_valid_perms": int(n_valid),
                    }
                )

        # ---------------- Nadeau–Bengio comparison ----------------
        elif method == "nadeau-bengio":
            if n_train is None or n_test is None:
                raise ValueError(
                    "n_train and n_test must be provided for the Nadeau-Bengio test."
                )

            folds1 = self._load_true_fold_results(first_analysis)
            folds2 = self._load_true_fold_results(second_analysis)

            if metric is None:
                metrics = set(folds1.columns).intersection(folds2.columns)
            else:
                metrics = [metric]
            for metric in metrics:
                # fold-wise differences: analysis2 - analysis1
                diffs = folds2[metric].values - folds1[metric].values
                p_val, t_stat = self._nadeau_bengio_p_value(
                    diffs,
                    n_train=n_train,
                    n_test=n_test,
                )
                mean_diff = float(np.mean(diffs))

                print(
                    f"[nadeau-bengio] {metric}: p={p_val}, t={t_stat}, "
                    f"A={folds1[metric].mean()}[{folds1[metric].std()}], "
                    f"B={folds2[metric].mean()}[{folds2[metric].std()}], "
                    f"mean_diff={mean_diff}"
                )

                results.append(
                    {
                        "metric": metric,
                        "method": "nadeau-bengio",
                        "p_value": p_val,
                        "t_stat": t_stat,
                        "effect": mean_diff,  # analysis2 - analysis1
                        "n_folds": len(diffs),
                    }
                )

        df = pd.DataFrame(results).set_index("metric")
        if print_report:
            self.print_comparison_report(first_analysis, second_analysis, df)
        return df

    def print_comparison_report(
        self,
        first_analysis: str,
        second_analysis: str,
        results_df: pd.DataFrame,
    ) -> None:
        """
        Print a formatted summary for the comparison of two analyses.

        This report includes, for each metric:
        - mean and standard deviation of the true performance for both analyses,
        - the difference (second - first),
        - the statistical method, and
        - method-specific statistics (p-value, t-statistic, etc.).

        Parameters
        ----------
        first_analysis : str
            Name of the first analysis.
        second_analysis : str
            Name of the second analysis.
        results_df : pandas.DataFrame
            Output DataFrame from :meth:`compare_analyses`.
        """
        # Load true per-fold results to get mean & std
        folds1 = self._load_true_fold_results(first_analysis)
        folds2 = self._load_true_fold_results(second_analysis)

        print("\n" + "=" * 80)
        print(f"COMPARISON REPORT: {first_analysis}  vs  {second_analysis}")
        print("=" * 80)

        for _, row in results_df.reset_index().iterrows():
            metric = row["metric"]
            method = row["method"]

            true1 = folds1[metric]
            true2 = folds2[metric]

            mean1, std1 = true1.mean(), true1.std(ddof=1)
            mean2, std2 = true2.mean(), true2.std(ddof=1)

            diff = mean2 - mean1

            print(f"\n--- Metric: {metric} ---")
            print(f"{first_analysis}: mean={mean1:.4f}, std={std1:.4f}")
            print(f"{second_analysis}: mean={mean2:.4f}, std={std2:.4f}")
            print(f"Difference (second - first): {diff:.4f}")

            print(f"\nMethod: {method}")

            if method == "nadeau-bengio":
                print(f"T-statistic: {row.get('t_stat', float('nan')):.4f}")
                print(f"P-value:     {row['p_value']:.6f}")

            elif method == "permutation":
                print(f"P-value:     {row['p_value']:.6f}")
                print(f"Valid perms: {row.get('n_valid_perms', 'N/A')}")

            print("-" * 80)

        print("\n")

    def compare_multiple_analyses(
        self,
        analyses: Iterable[str],
        method: Literal["nadeau-bengio", "permutation"] = "nadeau-bengio",
        metric: str | None = None,
        n_perms: int = 1000,
        n_train: int | None = None,
        n_test: int | None = None,
    ) -> pd.DataFrame:
        """
        Compare all pairs of analyses using :meth:`compare_analyses`.

        Parameters
        ----------
        analyses : iterable of str
            Names of analyses (e.g. ``["A", "B", "C", "D"]``).
        method : {"nadeau-bengio", "permutation"}, optional
            Which comparison method to use, by default "nadeau-bengio".
        metric : str or None, optional
            If given, only compare this metric. If None, compare all metrics
            common to each pair, by default None.
        n_perms : int, optional
            Number of permutations (for permutation-based comparison),
            by default 1000.
        n_train : int, optional
            Number of training samples (for Nadeau–Bengio).
        n_test : int, optional
            Number of test samples (for Nadeau–Bengio).

        Returns
        -------
        pandas.DataFrame
            Long-format table with one row per (metric, pair), including
            p-values, effect sizes, and method-specific statistics.

        Raises
        ------
        ValueError
            If fewer than two analyses are provided.
        """
        analyses = list(analyses)
        if len(analyses) < 2:
            raise ValueError("Need at least two analyses to compare.")

        all_results = []

        for first, second in combinations(analyses, 2):
            print(f"Comparing '{first}' vs '{second}' using {method}...")
            pair_df = self.compare_analyses(
                first_analysis=first,
                second_analysis=second,
                method=method,
                metric=metric,
                n_perms=n_perms,
                n_train=n_train,
                n_test=n_test,
                print_report=False,
            )

            # Make sure we don't accidentally mutate the original
            pair_df = pair_df.copy()
            pair_df["first_analysis"] = first
            pair_df["second_analysis"] = second

            # move metric from index to column for stacking
            pair_df = pair_df.reset_index()  # 'metric' becomes a column
            all_results.append(pair_df)

        if not all_results:
            return pd.DataFrame()

        result_df = pd.concat(all_results, ignore_index=True)

        return result_df

    def _run_permutation_test(
        self,
        name: str,
        random_state: int = 15,
        n_perms: int = 1000,
        overwrite: bool = False,
        perm_runs: range = range(1000),
    ) -> None:
        """
        Internal helper to run a subset of permutation tests for an analysis.

        Parameters
        ----------
        name : str
            Name of the analysis.
        random_state : int, optional
            Base random state for permutation generation, by default 15.
        n_perms : int, optional
            Total number of permutation runs, by default 1000.
        overwrite : bool, optional
            Whether to overwrite existing permutation results, by default False.
        perm_runs : range, optional
            Iterable of permutation indices to run, by default range(1000).

        Raises
        ------
        ValueError
            If the analysis folder does not exist.
        """
        # check that analysis folder exists
        if name not in os.listdir(self.project_folder):
            raise ValueError(
                f"Analysis {name} not found in project folder {self.project_folder}"
            )

        analysis_folder = os.path.join(self.project_folder, name)
        data_folder = os.path.join(analysis_folder, "data")
        perm_folder = os.path.join(analysis_folder, "permutations")

        # load data
        X = np.load(os.path.join(data_folder, "X.npy"))
        y = np.load(os.path.join(data_folder, "y.npy"))

        for perm_run in perm_runs:
            current_perm_folder = os.path.join(perm_folder, str(perm_run))
            if (
                not overwrite
                and os.path.exists(
                    os.path.join(current_perm_folder, "photonai_results.json")
                )
            ):
                print(
                    f"Skipping permutation {perm_run + 1}/{n_perms} as it already exists."
                )
                continue

            print(f"Running permutation {perm_run + 1}/{n_perms}")
            np.random.seed(random_state + perm_run)
            y_perm = np.random.permutation(y)
            pipe = self._load_hyperpipe(analysis_folder, name, perm_run=True)
            pipe.output_settings.set_project_folder(
                os.path.join(perm_folder, str(perm_run))
            )
            pipe.output_settings.set_log_file()
            pipe.name = name
            pipe.project_folder = os.path.join(perm_folder, str(perm_run))
            pipe.fit(X, y_perm)
            shutil.copyfile(
                os.path.join(
                    pipe.output_settings.results_folder, "photonai_results.json"
                ),
                os.path.join(
                    os.path.join(perm_folder, str(perm_run)),
                    "photonai_results.json",
                ),
            )
            shutil.rmtree(pipe.output_settings.results_folder)

    def run_permutation_test_slurm(
        self,
        name: str,
        n_perms: int = 1000,
        random_state: int = 15,
        overwrite: bool = False,
        slurm_job_id: int | None = None,
        n_perms_per_job: int | None = None,
    ) -> None:
        """
        Run a subset of permutation tests for use in a SLURM array job.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int, optional
            Total number of permutation runs, by default 1000.
        random_state : int, optional
            Base random state for permutation generation, by default 15.
        overwrite : bool, optional
            Whether to overwrite existing permutation results, by default False.
        slurm_job_id : int or None, optional
            Index of the SLURM array job (starting at 1).
        n_perms_per_job : int or None, optional
            Number of permutations to run in this job.
        """
        perms_to_do = np.arange(
            (slurm_job_id - 1) * n_perms_per_job,
            (slurm_job_id - 1) * n_perms_per_job + n_perms_per_job,
        )
        self._run_permutation_test(
            name=name,
            random_state=random_state,
            n_perms=n_perms,
            overwrite=overwrite,
            perm_runs=perms_to_do,
        )

    def prepare_slurm_permutation_test(
        self,
        name: str,
        n_perms: int,
        conda_env: str,
        memory_per_cpu: int,
        n_jobs: int,
        run_time: str = "0-01:00:00",
        random_state: int = 1,
    ) -> None:
        """
        Prepare a SLURM job script for running permutation tests in parallel.

        This function:
        - computes how many permutations each SLURM array job should run,
        - copies the current project script into the project folder, and
        - writes a SLURM script that calls :func:`run_perm_job`.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int
            Total number of permutation runs.
        conda_env : str
            Name of the conda environment to activate in the SLURM job.
        memory_per_cpu : int
            Memory per CPU in GB.
        n_jobs : int
            Number of jobs in the SLURM array.
        run_time : str, optional
            Maximum wall time for each job (SLURM time format),
            by default "0-01:00:00".
        random_state : int, optional
            Base random state, by default 1.

        Raises
        ------
        ValueError
            If the analysis folder does not exist in the project folder.
        """
        if name not in os.listdir(self.project_folder):
            raise ValueError(
                f"Analysis {name} not found in project folder {self.project_folder}"
            )

        analysis_folder = os.path.join(self.project_folder, name)
        # calculate the number of perms per job
        n_perms_per_job = int(n_perms / n_jobs)

        # copy script that contains the permutation test
        shutil.copyfile(
            os.path.abspath(__file__),
            os.path.join(self.project_folder, os.path.basename(__file__)),
        )

        # create slurm script
        cmd = f"""#!/bin/bash

#SBATCH --job-name={name + "_perm_test"}
#SBATCH --output=logs/job_%a.log

#SBATCH --partition normal
#SBATCH --mem-per-cpu={memory_per_cpu}G
#SBATCH --time={run_time}
#SBATCH --array=1-{n_jobs}

# add python
module load palma/2021a
module load Miniconda3

# activate conda env
eval "$(conda shell.bash hook)"
conda activate {conda_env}


python ../project.py --project-folder ../../{self.project_folder} --analysis-name {name} --n-perms {n_perms} --slurm-job-id $SLURM_ARRAY_TASK_ID --n-perms-per-job {n_perms_per_job} --random-state {random_state}
"""
        with open(os.path.join(analysis_folder, "slurm_job.cmd"), "w") as text_file:
            text_file.write(cmd)

        return

    def generate_report(self):
        self.reporter.collect_results()
        self.reporter.write_report()

__init__(project_folder, feature_importances=False)

Initialize a PHOTONAI project.

Parameters:

Name Type Description Default
project_folder str

Path to the root folder of the project. All analyses and results are stored inside this folder.

required
feature_importances bool

Whether to compute feature importances (not yet used in this class), by default False.

False
Source code in photonai_projects/project.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def __init__(
    self,
    project_folder: str,
    feature_importances: bool = False,
):
    """
    Initialize a PHOTONAI project.

    Parameters
    ----------
    project_folder : str
        Path to the root folder of the project. All analyses and results are
        stored inside this folder.
    feature_importances : bool, optional
        Whether to compute feature importances (not yet used in this class),
        by default False.
    """
    self.project_folder = project_folder
    self.feature_importances = feature_importances
    self.reporter = Reporter(self.project_folder)
    os.makedirs(self.project_folder, exist_ok=True)

add(name, X, y, hyperpipe_script, name_hyperpipe_constructor, **kwargs)

Register a new analysis in the project.

This will: - create an analysis subfolder in project_folder, - save X and y as NumPy arrays, - copy the hyperpipe script into the analysis folder, and - write hyperpipe_meta.json with the constructor function name.

Parameters:

Name Type Description Default
name str

Name of the analysis (subfolder name).

required
X ndarray

Feature matrix with shape (n_samples, n_features).

required
y ndarray

Target vector with shape (n_samples,).

required
hyperpipe_script str

Path to the Python script that defines the hyperpipe constructor.

required
name_hyperpipe_constructor str

Name of the hyperpipe constructor function inside hyperpipe_script.

required
**kwargs

Additional keyword arguments (currently unused, reserved for future use).

{}

Raises:

Type Description
ValueError

If hyperpipe_script or name_hyperpipe_constructor are not provided.

Source code in photonai_projects/project.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
def add(
    self,
    name: str,
    X: np.ndarray,
    y: np.ndarray,
    hyperpipe_script: str,
    name_hyperpipe_constructor: str,
    **kwargs,
):
    """
    Register a new analysis in the project.

    This will:
    - create an analysis subfolder in ``project_folder``,
    - save `X` and `y` as NumPy arrays,
    - copy the hyperpipe script into the analysis folder, and
    - write ``hyperpipe_meta.json`` with the constructor function name.

    Parameters
    ----------
    name : str
        Name of the analysis (subfolder name).
    X : np.ndarray
        Feature matrix with shape (n_samples, n_features).
    y : np.ndarray
        Target vector with shape (n_samples,).
    hyperpipe_script : str
        Path to the Python script that defines the hyperpipe constructor.
    name_hyperpipe_constructor : str
        Name of the hyperpipe constructor function inside `hyperpipe_script`.
    **kwargs :
        Additional keyword arguments (currently unused, reserved for future use).

    Raises
    ------
    ValueError
        If `hyperpipe_script` or `name_hyperpipe_constructor` are not provided.
    """
    if hyperpipe_script is None:
        raise ValueError("hyperpipe_script must be provided in add.")
    if name_hyperpipe_constructor is None:
        raise ValueError("name_hyperpipe_constructor must be provided in add.")

    # create directories for analysis and data
    analysis_folder = os.path.join(self.project_folder, name)
    os.makedirs(analysis_folder, exist_ok=True)
    os.makedirs(os.path.join(analysis_folder, "data"), exist_ok=True)

    # save data to numpy array
    np.save(os.path.join(analysis_folder, "data", "X.npy"), X)
    np.save(os.path.join(analysis_folder, "data", "y.npy"), y)

    # copy script that contains the hyperpipe definition
    shutil.copyfile(
        hyperpipe_script,
        os.path.join(analysis_folder, "hyperpipe_constructor.py"),
    )

    # save metadata (constructor function name etc.)
    meta = {
        "name_hyperpipe_constructor": name_hyperpipe_constructor
        # you could add more fields here (e.g. timestamp, description, etc.)
    }
    meta_path = os.path.join(analysis_folder, "hyperpipe_meta.json")
    with open(meta_path, "w") as f:
        json.dump(meta, f, indent=2)

aggregate_permutation_test(name, n_perms=1000)

Aggregate results from individual permutation runs into a single CSV file.

This function: - collects mean outer-fold metrics for each permutation run, - ensures that all permutation indices 0..n_perms-1 are represented, - fills missing values with ±∞ depending on whether higher is better, and - writes the result to permutation_results.csv in the analysis folder.

Parameters:

Name Type Description Default
name str

Name of the analysis.

required
n_perms int

Number of permutation runs, by default 1000.

1000
Source code in photonai_projects/project.py
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def aggregate_permutation_test(self, name: str, n_perms: int = 1000) -> None:
    """
    Aggregate results from individual permutation runs into a single CSV file.

    This function:
    - collects mean outer-fold metrics for each permutation run,
    - ensures that all permutation indices `0..n_perms-1` are represented,
    - fills missing values with ±∞ depending on whether higher is better, and
    - writes the result to ``permutation_results.csv`` in the analysis folder.

    Parameters
    ----------
    name : str
        Name of the analysis.
    n_perms : int, optional
        Number of permutation runs, by default 1000.
    """
    perm_folder = Path(self.project_folder) / name / "permutations"
    valid_runs, missing_runs = self.check_permutation_test(name, n_perms)

    outer_folds_metrics = []
    for valid_run in valid_runs:
        print(f"Aggregating results for permutation run {valid_run + 1}/{n_perms}")
        handler = ResultsHandler()
        handler.load_from_file(
            str(perm_folder / str(valid_run) / "photonai_results.json")
        )
        mean_metrics = pd.DataFrame(
            handler.get_performance_outer_folds()
        ).mean(axis=0)
        mean_metrics["run"] = valid_run
        outer_folds_metrics.append(mean_metrics)

    perm_results = pd.DataFrame(outer_folds_metrics)

    # Ensure all runs 0..n_perms-1 are represented
    df_perm_index = pd.DataFrame(
        np.arange(n_perms), columns=["run"], index=np.arange(n_perms)
    )
    perm_results = pd.merge(df_perm_index, perm_results, on="run", how="left")

    for metric in list(perm_results.keys()):
        if metric == "run":
            continue
        greater_is_better = Scorer.greater_is_better_distinction(metric)
        if greater_is_better:
            perm_results[metric] = perm_results[metric].fillna(np.inf)
        else:
            perm_results[metric] = perm_results[metric].fillna(-np.inf)

    perm_results.to_csv(
        Path(self.project_folder) / name / "permutation_results.csv", index=False
    )

calculate_permutation_p_values(name, n_perms=1000)

Compute permutation-based p-values for a given analysis.

For each metric, this function compares the true mean performance to the distribution of permutation results and computes a one-sided p-value using the standard (k+1)/(n_perms+1) formulation.

Parameters:

Name Type Description Default
name str

Name of the analysis.

required
n_perms int

Number of permutation runs, by default 1000.

1000
Source code in photonai_projects/project.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
def calculate_permutation_p_values(
    self,
    name: str,
    n_perms: int = 1000,
) -> None:
    """
    Compute permutation-based p-values for a given analysis.

    For each metric, this function compares the true mean performance to the
    distribution of permutation results and computes a one-sided p-value
    using the standard (k+1)/(n_perms+1) formulation.

    Parameters
    ----------
    name : str
        Name of the analysis.
    n_perms : int, optional
        Number of permutation runs, by default 1000.
    """
    true_results = self._load_true_results(name)
    perm_results = self._ensure_and_load_permutation_results(name, n_perms)

    p_values: Dict[str, float] = {}
    for metric in list(true_results.keys()):
        greater_is_better = Scorer.greater_is_better_distinction(metric)
        current_perm_results = np.asarray(perm_results[metric], dtype=float)

        if greater_is_better:
            current_perm_results[np.isnan(current_perm_results)] = np.inf
            p_values[metric] = (
                np.sum(true_results[metric] < current_perm_results) + 1
            ) / (n_perms + 1)
        else:
            current_perm_results[np.isnan(current_perm_results)] = -np.inf
            p_values[metric] = (
                np.sum(true_results[metric] > current_perm_results) + 1
            ) / (n_perms + 1)

        n_valid = n_perms - np.sum(np.isinf(current_perm_results))
        print(
            f"p-value for {metric}: {p_values[metric]} "
            f"(based on n={n_valid} valid permutations)"
        )

    pd.DataFrame(p_values, index=[0]).to_csv(
        Path(self.project_folder) / name / "permutation_p_values.csv",
        index=False,
    )

check_permutation_test(name, n_perms=1000)

Check which permutation runs have a stored PHOTONAI results file.

Parameters:

Name Type Description Default
name str

Name of the analysis.

required
n_perms int

Expected number of permutation runs, by default 1000.

1000

Returns:

Type Description
list of int

Sorted list of permutation run indices that were found.

list of int

Sorted list of permutation run indices that are missing.

Source code in photonai_projects/project.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
def check_permutation_test(
    self,
    name: str,
    n_perms: int = 1000,
):
    """
    Check which permutation runs have a stored PHOTONAI results file.

    Parameters
    ----------
    name : str
        Name of the analysis.
    n_perms : int, optional
        Expected number of permutation runs, by default 1000.

    Returns
    -------
    list of int
        Sorted list of permutation run indices that were found.
    list of int
        Sorted list of permutation run indices that are missing.
    """
    perm_runs = range(n_perms)
    perm_folder = Path(self.project_folder) / name / "permutations"

    found_runs = [
        int(folder.name)
        for folder in perm_folder.iterdir()
        if folder.is_dir() and (folder / "photonai_results.json").exists()
    ]
    missing_runs = sorted(set(perm_runs) - set(found_runs))
    print(
        f"Found {len(found_runs)} permutation runs, {len(missing_runs)} are missing."
    )
    return sorted(found_runs), missing_runs

compare_analyses(first_analysis, second_analysis, method='nadeau-bengio', metric=None, n_perms=1000, n_train=None, n_test=None, print_report=True)

Compare two analyses using statistical tests.

You can choose between: - Nadeau–Bengio corrected t-test on outer-fold scores, or - permutation-based null distribution of performance differences.

Parameters:

Name Type Description Default
first_analysis str

Name of the first analysis.

required
second_analysis str

Name of the second analysis.

required
method (nadeau - bengio, permutation)

Statistical comparison method, by default "nadeau-bengio".

"nadeau-bengio"
metric str or None

If given, only compare this metric. If None, compare all metrics common to both analyses, by default None.

None
n_perms int

Number of permutation runs (only for permutation-based comparison), by default 1000.

1000
n_train int or None

Number of training samples used during cross-validation (required for Nadeau–Bengio), by default None.

None
n_test int or None

Number of test samples used during cross-validation (required for Nadeau–Bengio), by default None.

None
print_report bool

If True, print a formatted comparison report, by default True.

True

Returns:

Type Description
DataFrame

DataFrame indexed by metric, containing columns such as: p_value, effect, and method-specific fields (e.g. t_stat, n_folds or n_valid_perms).

Raises:

Type Description
ValueError

If an invalid method is passed or required parameters are missing.

Source code in photonai_projects/project.py
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
def compare_analyses(
    self,
    first_analysis: str,
    second_analysis: str,
    method: Literal["nadeau-bengio", "permutation"] = "nadeau-bengio",
    metric: str | None = None,
    n_perms: int = 1000,
    n_train: int | None = None,
    n_test: int | None = None,
    print_report: bool = True,
) -> pd.DataFrame:
    """
    Compare two analyses using statistical tests.

    You can choose between:
    - Nadeau–Bengio corrected t-test on outer-fold scores, or
    - permutation-based null distribution of performance differences.

    Parameters
    ----------
    first_analysis : str
        Name of the first analysis.
    second_analysis : str
        Name of the second analysis.
    method : {"nadeau-bengio", "permutation"}, optional
        Statistical comparison method, by default "nadeau-bengio".
    metric : str or None, optional
        If given, only compare this metric. If None, compare all metrics
        common to both analyses, by default None.
    n_perms : int, optional
        Number of permutation runs (only for permutation-based comparison),
        by default 1000.
    n_train : int or None, optional
        Number of training samples used during cross-validation (required
        for Nadeau–Bengio), by default None.
    n_test : int or None, optional
        Number of test samples used during cross-validation (required
        for Nadeau–Bengio), by default None.
    print_report : bool, optional
        If True, print a formatted comparison report, by default True.

    Returns
    -------
    pandas.DataFrame
        DataFrame indexed by metric, containing columns such as:
        ``p_value``, ``effect``, and method-specific fields (e.g. ``t_stat``,
        ``n_folds`` or ``n_valid_perms``).

    Raises
    ------
    ValueError
        If an invalid method is passed or required parameters are missing.
    """
    valid_methods = {"nadeau-bengio", "permutation"}
    if method not in valid_methods:
        raise ValueError(
            f"Invalid method '{method}'. Valid options are: {valid_methods}"
        )

    results: list[dict] = []

    # ---------------- permutation-based comparison ----------------
    if method == "permutation":
        # Load true and permutation results for both analyses
        true1 = self._load_true_results(first_analysis)
        perm1 = self._ensure_and_load_permutation_results(
            first_analysis, n_perms
        )

        true2 = self._load_true_results(second_analysis)
        perm2 = self._ensure_and_load_permutation_results(
            second_analysis, n_perms
        )

        # sanity check: runs aligned
        if not np.array_equal(perm1["run"].values, perm2["run"].values):
            raise ValueError(
                "Permutation indices (run column) do not match between analyses."
            )

        if metric is None:
            metrics = set(true1.index).intersection(true2.index)
        else:
            metrics = [metric]
        for metric in metrics:
            greater_is_better = Scorer.greater_is_better_distinction(metric)

            # true difference: analysis2 - analysis1
            true_diff = float(true2[metric] - true1[metric])

            # permutation differences per run
            perm_diff = (
                np.asarray(perm2[metric], dtype=float)
                - np.asarray(perm1[metric], dtype=float)
            )

            if greater_is_better:
                perm_diff[np.isnan(perm_diff)] = np.inf
                p_val = (np.sum(true_diff < perm_diff) + 1) / (n_perms + 1)
            else:
                perm_diff[np.isnan(perm_diff)] = -np.inf
                p_val = (np.sum(true_diff > perm_diff) + 1) / (n_perms + 1)

            n_valid = n_perms - np.sum(np.isinf(perm_diff))
            print(
                f"[permutation] {metric}: p={p_val}, "
                f"true_diff={true_diff} (n_valid={n_valid})"
            )

            results.append(
                {
                    "metric": metric,
                    "method": "permutation",
                    "p_value": p_val,
                    "effect": true_diff,  # analysis2 - analysis1
                    "n_valid_perms": int(n_valid),
                }
            )

    # ---------------- Nadeau–Bengio comparison ----------------
    elif method == "nadeau-bengio":
        if n_train is None or n_test is None:
            raise ValueError(
                "n_train and n_test must be provided for the Nadeau-Bengio test."
            )

        folds1 = self._load_true_fold_results(first_analysis)
        folds2 = self._load_true_fold_results(second_analysis)

        if metric is None:
            metrics = set(folds1.columns).intersection(folds2.columns)
        else:
            metrics = [metric]
        for metric in metrics:
            # fold-wise differences: analysis2 - analysis1
            diffs = folds2[metric].values - folds1[metric].values
            p_val, t_stat = self._nadeau_bengio_p_value(
                diffs,
                n_train=n_train,
                n_test=n_test,
            )
            mean_diff = float(np.mean(diffs))

            print(
                f"[nadeau-bengio] {metric}: p={p_val}, t={t_stat}, "
                f"A={folds1[metric].mean()}[{folds1[metric].std()}], "
                f"B={folds2[metric].mean()}[{folds2[metric].std()}], "
                f"mean_diff={mean_diff}"
            )

            results.append(
                {
                    "metric": metric,
                    "method": "nadeau-bengio",
                    "p_value": p_val,
                    "t_stat": t_stat,
                    "effect": mean_diff,  # analysis2 - analysis1
                    "n_folds": len(diffs),
                }
            )

    df = pd.DataFrame(results).set_index("metric")
    if print_report:
        self.print_comparison_report(first_analysis, second_analysis, df)
    return df

compare_multiple_analyses(analyses, method='nadeau-bengio', metric=None, n_perms=1000, n_train=None, n_test=None)

Compare all pairs of analyses using :meth:compare_analyses.

Parameters:

Name Type Description Default
analyses iterable of str

Names of analyses (e.g. ["A", "B", "C", "D"]).

required
method (nadeau - bengio, permutation)

Which comparison method to use, by default "nadeau-bengio".

"nadeau-bengio"
metric str or None

If given, only compare this metric. If None, compare all metrics common to each pair, by default None.

None
n_perms int

Number of permutations (for permutation-based comparison), by default 1000.

1000
n_train int

Number of training samples (for Nadeau–Bengio).

None
n_test int

Number of test samples (for Nadeau–Bengio).

None

Returns:

Type Description
DataFrame

Long-format table with one row per (metric, pair), including p-values, effect sizes, and method-specific statistics.

Raises:

Type Description
ValueError

If fewer than two analyses are provided.

Source code in photonai_projects/project.py
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
def compare_multiple_analyses(
    self,
    analyses: Iterable[str],
    method: Literal["nadeau-bengio", "permutation"] = "nadeau-bengio",
    metric: str | None = None,
    n_perms: int = 1000,
    n_train: int | None = None,
    n_test: int | None = None,
) -> pd.DataFrame:
    """
    Compare all pairs of analyses using :meth:`compare_analyses`.

    Parameters
    ----------
    analyses : iterable of str
        Names of analyses (e.g. ``["A", "B", "C", "D"]``).
    method : {"nadeau-bengio", "permutation"}, optional
        Which comparison method to use, by default "nadeau-bengio".
    metric : str or None, optional
        If given, only compare this metric. If None, compare all metrics
        common to each pair, by default None.
    n_perms : int, optional
        Number of permutations (for permutation-based comparison),
        by default 1000.
    n_train : int, optional
        Number of training samples (for Nadeau–Bengio).
    n_test : int, optional
        Number of test samples (for Nadeau–Bengio).

    Returns
    -------
    pandas.DataFrame
        Long-format table with one row per (metric, pair), including
        p-values, effect sizes, and method-specific statistics.

    Raises
    ------
    ValueError
        If fewer than two analyses are provided.
    """
    analyses = list(analyses)
    if len(analyses) < 2:
        raise ValueError("Need at least two analyses to compare.")

    all_results = []

    for first, second in combinations(analyses, 2):
        print(f"Comparing '{first}' vs '{second}' using {method}...")
        pair_df = self.compare_analyses(
            first_analysis=first,
            second_analysis=second,
            method=method,
            metric=metric,
            n_perms=n_perms,
            n_train=n_train,
            n_test=n_test,
            print_report=False,
        )

        # Make sure we don't accidentally mutate the original
        pair_df = pair_df.copy()
        pair_df["first_analysis"] = first
        pair_df["second_analysis"] = second

        # move metric from index to column for stacking
        pair_df = pair_df.reset_index()  # 'metric' becomes a column
        all_results.append(pair_df)

    if not all_results:
        return pd.DataFrame()

    result_df = pd.concat(all_results, ignore_index=True)

    return result_df

list_analyses()

Print a list of all analyses available in the project folder.

The function scans the project folder for subdirectories and prints them as available analyses.

Source code in photonai_projects/project.py
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
def list_analyses(self) -> None:
    """
    Print a list of all analyses available in the project folder.

    The function scans the project folder for subdirectories and prints them
    as available analyses.
    """
    analyses = [
        item
        for item in os.listdir(self.project_folder)
        if os.path.isdir(os.path.join(self.project_folder, item))
    ]
    print("Available PHOTONAI analyses are:")
    for analysis in analyses:
        print(f"  - {analysis}")

prepare_slurm_permutation_test(name, n_perms, conda_env, memory_per_cpu, n_jobs, run_time='0-01:00:00', random_state=1)

Prepare a SLURM job script for running permutation tests in parallel.

This function: - computes how many permutations each SLURM array job should run, - copies the current project script into the project folder, and - writes a SLURM script that calls :func:run_perm_job.

Parameters:

Name Type Description Default
name str

Name of the analysis.

required
n_perms int

Total number of permutation runs.

required
conda_env str

Name of the conda environment to activate in the SLURM job.

required
memory_per_cpu int

Memory per CPU in GB.

required
n_jobs int

Number of jobs in the SLURM array.

required
run_time str

Maximum wall time for each job (SLURM time format), by default "0-01:00:00".

'0-01:00:00'
random_state int

Base random state, by default 1.

1

Raises:

Type Description
ValueError

If the analysis folder does not exist in the project folder.

Source code in photonai_projects/project.py
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    def prepare_slurm_permutation_test(
        self,
        name: str,
        n_perms: int,
        conda_env: str,
        memory_per_cpu: int,
        n_jobs: int,
        run_time: str = "0-01:00:00",
        random_state: int = 1,
    ) -> None:
        """
        Prepare a SLURM job script for running permutation tests in parallel.

        This function:
        - computes how many permutations each SLURM array job should run,
        - copies the current project script into the project folder, and
        - writes a SLURM script that calls :func:`run_perm_job`.

        Parameters
        ----------
        name : str
            Name of the analysis.
        n_perms : int
            Total number of permutation runs.
        conda_env : str
            Name of the conda environment to activate in the SLURM job.
        memory_per_cpu : int
            Memory per CPU in GB.
        n_jobs : int
            Number of jobs in the SLURM array.
        run_time : str, optional
            Maximum wall time for each job (SLURM time format),
            by default "0-01:00:00".
        random_state : int, optional
            Base random state, by default 1.

        Raises
        ------
        ValueError
            If the analysis folder does not exist in the project folder.
        """
        if name not in os.listdir(self.project_folder):
            raise ValueError(
                f"Analysis {name} not found in project folder {self.project_folder}"
            )

        analysis_folder = os.path.join(self.project_folder, name)
        # calculate the number of perms per job
        n_perms_per_job = int(n_perms / n_jobs)

        # copy script that contains the permutation test
        shutil.copyfile(
            os.path.abspath(__file__),
            os.path.join(self.project_folder, os.path.basename(__file__)),
        )

        # create slurm script
        cmd = f"""#!/bin/bash

#SBATCH --job-name={name + "_perm_test"}
#SBATCH --output=logs/job_%a.log

#SBATCH --partition normal
#SBATCH --mem-per-cpu={memory_per_cpu}G
#SBATCH --time={run_time}
#SBATCH --array=1-{n_jobs}

# add python
module load palma/2021a
module load Miniconda3

# activate conda env
eval "$(conda shell.bash hook)"
conda activate {conda_env}


python ../project.py --project-folder ../../{self.project_folder} --analysis-name {name} --n-perms {n_perms} --slurm-job-id $SLURM_ARRAY_TASK_ID --n-perms-per-job {n_perms_per_job} --random-state {random_state}
"""
        with open(os.path.join(analysis_folder, "slurm_job.cmd"), "w") as text_file:
            text_file.write(cmd)

        return

print_comparison_report(first_analysis, second_analysis, results_df)

Print a formatted summary for the comparison of two analyses.

This report includes, for each metric: - mean and standard deviation of the true performance for both analyses, - the difference (second - first), - the statistical method, and - method-specific statistics (p-value, t-statistic, etc.).

Parameters:

Name Type Description Default
first_analysis str

Name of the first analysis.

required
second_analysis str

Name of the second analysis.

required
results_df DataFrame

Output DataFrame from :meth:compare_analyses.

required
Source code in photonai_projects/project.py
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
def print_comparison_report(
    self,
    first_analysis: str,
    second_analysis: str,
    results_df: pd.DataFrame,
) -> None:
    """
    Print a formatted summary for the comparison of two analyses.

    This report includes, for each metric:
    - mean and standard deviation of the true performance for both analyses,
    - the difference (second - first),
    - the statistical method, and
    - method-specific statistics (p-value, t-statistic, etc.).

    Parameters
    ----------
    first_analysis : str
        Name of the first analysis.
    second_analysis : str
        Name of the second analysis.
    results_df : pandas.DataFrame
        Output DataFrame from :meth:`compare_analyses`.
    """
    # Load true per-fold results to get mean & std
    folds1 = self._load_true_fold_results(first_analysis)
    folds2 = self._load_true_fold_results(second_analysis)

    print("\n" + "=" * 80)
    print(f"COMPARISON REPORT: {first_analysis}  vs  {second_analysis}")
    print("=" * 80)

    for _, row in results_df.reset_index().iterrows():
        metric = row["metric"]
        method = row["method"]

        true1 = folds1[metric]
        true2 = folds2[metric]

        mean1, std1 = true1.mean(), true1.std(ddof=1)
        mean2, std2 = true2.mean(), true2.std(ddof=1)

        diff = mean2 - mean1

        print(f"\n--- Metric: {metric} ---")
        print(f"{first_analysis}: mean={mean1:.4f}, std={std1:.4f}")
        print(f"{second_analysis}: mean={mean2:.4f}, std={std2:.4f}")
        print(f"Difference (second - first): {diff:.4f}")

        print(f"\nMethod: {method}")

        if method == "nadeau-bengio":
            print(f"T-statistic: {row.get('t_stat', float('nan')):.4f}")
            print(f"P-value:     {row['p_value']:.6f}")

        elif method == "permutation":
            print(f"P-value:     {row['p_value']:.6f}")
            print(f"Valid perms: {row.get('n_valid_perms', 'N/A')}")

        print("-" * 80)

    print("\n")

run(name)

Run a PHOTONAI analysis that has already been added to the project.

This will: - load the hyperpipe constructor from the analysis folder, - load the stored data X.npy and y.npy, - fit the hyperpipe, and - write PHOTONAI results to the analysis folder.

Parameters:

Name Type Description Default
name str

Name of the analysis (subfolder of project_folder).

required

Returns:

Type Description
Hyperpipe

The fitted PHOTONAI hyperpipe instance.

Raises:

Type Description
ValueError

If the analysis folder does not exist in the project folder.

Source code in photonai_projects/project.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def run(self, name: str):
    """
    Run a PHOTONAI analysis that has already been added to the project.

    This will:
    - load the hyperpipe constructor from the analysis folder,
    - load the stored data `X.npy` and `y.npy`,
    - fit the hyperpipe, and
    - write PHOTONAI results to the analysis folder.

    Parameters
    ----------
    name : str
        Name of the analysis (subfolder of `project_folder`).

    Returns
    -------
    Hyperpipe
        The fitted PHOTONAI hyperpipe instance.

    Raises
    ------
    ValueError
        If the analysis folder does not exist in the project folder.
    """
    # check that analysis folder exists
    if name not in os.listdir(self.project_folder):
        raise ValueError(
            f"Analysis {name} not found in project folder {self.project_folder}"
        )

    analysis_folder = os.path.join(self.project_folder, name)
    data_folder = os.path.join(analysis_folder, "data")

    pipe = self._load_hyperpipe(analysis_folder, name)
    pipe.output_settings.set_project_folder(analysis_folder)
    pipe.output_settings.set_log_file()
    pipe.name = name
    pipe.project_folder = analysis_folder

    # load data
    X = np.load(os.path.join(data_folder, "X.npy"))
    y = np.load(os.path.join(data_folder, "y.npy"))

    pipe.fit(X, y)

    # if you want to use feature_importances later, you can hook it here
    # if self.feature_importances:
    #     ...

    return pipe

run_permutation_test(name, n_perms=1000, random_state=15, overwrite=False)

Run a local permutation test for a given analysis.

Parameters:

Name Type Description Default
name str

Name of the analysis.

required
n_perms int

Total number of permutation runs, by default 1000.

1000
random_state int

Base random state for generating permutations, by default 15.

15
overwrite bool

If True, overwrite existing permutation results. If False, skip permutations that already have results, by default False.

False
Source code in photonai_projects/project.py
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
def run_permutation_test(
    self,
    name: str,
    n_perms: int = 1000,
    random_state: int = 15,
    overwrite: bool = False,
) -> None:
    """
    Run a local permutation test for a given analysis.

    Parameters
    ----------
    name : str
        Name of the analysis.
    n_perms : int, optional
        Total number of permutation runs, by default 1000.
    random_state : int, optional
        Base random state for generating permutations, by default 15.
    overwrite : bool, optional
        If True, overwrite existing permutation results. If False,
        skip permutations that already have results, by default False.
    """
    perm_runs = range(n_perms)
    self._run_permutation_test(
        name=name,
        random_state=random_state,
        n_perms=n_perms,
        overwrite=overwrite,
        perm_runs=perm_runs,
    )

run_permutation_test_slurm(name, n_perms=1000, random_state=15, overwrite=False, slurm_job_id=None, n_perms_per_job=None)

Run a subset of permutation tests for use in a SLURM array job.

Parameters:

Name Type Description Default
name str

Name of the analysis.

required
n_perms int

Total number of permutation runs, by default 1000.

1000
random_state int

Base random state for permutation generation, by default 15.

15
overwrite bool

Whether to overwrite existing permutation results, by default False.

False
slurm_job_id int or None

Index of the SLURM array job (starting at 1).

None
n_perms_per_job int or None

Number of permutations to run in this job.

None
Source code in photonai_projects/project.py
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
def run_permutation_test_slurm(
    self,
    name: str,
    n_perms: int = 1000,
    random_state: int = 15,
    overwrite: bool = False,
    slurm_job_id: int | None = None,
    n_perms_per_job: int | None = None,
) -> None:
    """
    Run a subset of permutation tests for use in a SLURM array job.

    Parameters
    ----------
    name : str
        Name of the analysis.
    n_perms : int, optional
        Total number of permutation runs, by default 1000.
    random_state : int, optional
        Base random state for permutation generation, by default 15.
    overwrite : bool, optional
        Whether to overwrite existing permutation results, by default False.
    slurm_job_id : int or None, optional
        Index of the SLURM array job (starting at 1).
    n_perms_per_job : int or None, optional
        Number of permutations to run in this job.
    """
    perms_to_do = np.arange(
        (slurm_job_id - 1) * n_perms_per_job,
        (slurm_job_id - 1) * n_perms_per_job + n_perms_per_job,
    )
    self._run_permutation_test(
        name=name,
        random_state=random_state,
        n_perms=n_perms,
        overwrite=overwrite,
        perm_runs=perms_to_do,
    )