Skip to content

Graph Conversion functions

The conversion functions are a collection of different handy helper functions for converting your input graphs between different toolboxes.

Popular supported formats are:

  • numpy arrays
  • networkx graphs
  • dgl graphs
  • scipy sparse matrices

PHOTONAI Graph will handle necessary conversions in your pipeline automatically.

Graph Conversion Functions

check_dgl(graphs, adjacency_axis=None, feature_axis=None)

Checks the input and converts it to dgl format

Parameters:

Name Type Description Default
graphs

graphs to be converted

required
adjacency_axis

position of the adjacency matrix

None
feature_axis

position of the feature matrix

None

dense_to_dgl(graphs, adjacency_axis=None, feature_axis=None)

Converts dense matrices to dgl graphs

Parameters:

Name Type Description Default
graphs

graphs represented in dense format

required
adjacency_axis

position of the adjacency matrix

None
feature_axis

position of the feature matrix

None

dense_to_igraph(graphs, adjacency_axis=None, feature_axis=None)

Converts dense matrices to igraph Graph objects :param graphs: np.ndarray or np.matrix graphs represented as dense format :param adjacency_axis: int, default=None position of the adjacency axis :param feature_axis: int, default=None position of the feature axis :return: igraph_graphs: Converted list of Igraph objects

dgl_to_dense(graphs, in_fmt='csr')

turns dgl graphs into dense matrices

Parameters:

Name Type Description Default
graphs

list of dgl graphs

required
in_fmt

format of the scipy sparse matrix used in the intermediary step

'csr'

dgl_to_sparse(graphs, fmt='csr')

turns dgl graphs into sparse matricesParameters

Parameters:

Name Type Description Default
graphs

list of dgl graphs

required
fmt

format of the scipy sparse matrix used in the intermediary step

'csr'

sparse_to_dense(graphs, features=None)

convert sparse matrices to numpy array

Parameters:

Name Type Description Default
graphs

a list of scipy sparse matrices or a single sparse matrix

required
features

if a feature matrix or a list of those is specified they are incorporated into the numpy array

None