from sklearn.datasets import load_boston
from sklearn.model_selection import KFold
from photonai.base import Hyperpipe, PipelineElement
from photonai.optimization import IntegerRange, FloatRange
my_pipe = Hyperpipe('basic_regression_pipe',
optimizer='random_search',
optimizer_params={'n_configurations': 25},
metrics=['mean_squared_error', 'mean_absolute_error', 'explained_variance'],
best_config_metric='mean_squared_error',
outer_cv=KFold(n_splits=3, shuffle=True),
inner_cv=KFold(n_splits=3, shuffle=True),
verbosity=1,
project_folder='./tmp/')
my_pipe += PipelineElement('SimpleImputer')
my_pipe += PipelineElement('StandardScaler')
my_pipe += PipelineElement('LassoFeatureSelection',
hyperparameters={'percentile': [0.1, 0.2, 0.3],
'alpha': FloatRange(0.5, 5)})
my_pipe += PipelineElement('RandomForestRegressor',
hyperparameters={'n_estimators': IntegerRange(10, 50)})
# load data and train
X, y = load_boston(return_X_y=True)
my_pipe.fit(X, y)