from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import KFold
from photonai.base import Hyperpipe, PipelineElement
from photonai.optimization import IntegerRange
# WE USE THE BREAST CANCER SET FROM SKLEARN
X, y = load_breast_cancer(return_X_y=True)
# DESIGN YOUR PIPELINE
my_pipe = Hyperpipe('multi_perceptron_pipe',
optimizer='sk_opt',
optimizer_params={'n_configurations': 25},
metrics=['accuracy', 'precision', 'recall', 'balanced_accuracy'],
best_config_metric='accuracy',
outer_cv=KFold(n_splits=3),
inner_cv=KFold(n_splits=3),
verbosity=1,
project_folder='./tmp/')
# ADD ELEMENTS TO YOUR PIPELINE
my_pipe += PipelineElement('StandardScaler')
my_pipe += PipelineElement('PhotonMLPClassifier', hyperparameters={'layer_1': IntegerRange(1, 5),
'layer_2': IntegerRange(0, 5),
'layer_3': IntegerRange(0, 5)})
# NOW TRAIN YOUR PIPELINE
my_pipe.fit(X, y)