import numpy as np
from sklearn.datasets import load_boston
from sklearn.model_selection import KFold
from photonai.base import Hyperpipe, PipelineElement
X, y = load_boston(return_X_y=True)
my_pipe = Hyperpipe(name='single_outer_pipe',
metrics=['mean_absolute_error', 'mean_squared_error', 'pearson_correlation'],
best_config_metric='mean_absolute_error',
use_test_set=False,
inner_cv=KFold(n_splits=10, shuffle=True, random_state=42),
verbosity=0,
project_folder='./tmp/')
# ADD ELEMENTS TO YOUR PIPELINE
my_pipe += PipelineElement('SimpleImputer', missing_values=np.nan, strategy='median')
my_pipe += PipelineElement('StandardScaler')
my_pipe += PipelineElement('GaussianProcessRegressor')
# NOW TRAIN YOUR PIPELINE
my_pipe.fit(X, y)
# find mean and std of all metrics here
test_metrics = my_pipe.results.best_config.metrics_test
train_metrics = my_pipe.results.best_config.metrics_train