Documentation for LabelEncoder
  Suitable version of the scikit-learn LabelEncoder for PHOTONAI. Since the pipeline process streams the underlying samples to every transformer, this class is required.
Source code in photonai/modelwrapper/label_encoder.py
          class LabelEncoder(SKLabelEncoder):
    """
    Suitable version of the scikit-learn LabelEncoder for PHOTONAI.
    Since the pipeline process streams the underlying samples to
    every transformer, this class is required.
    """
    def __init__(self):
        """Initialize the object."""
        super(LabelEncoder, self).__init__()
        self.needs_y = True
    def fit(self, X: np.ndarray, y: np.ndarray = None, **kwargs):
        """
        Call of the underlying sklearn.fit(y) method.
        Parameters:
            X:
                The input samples of shape [n_samples, n_features].
            y:
                The input targets of shape [n_samples, 1].
            **kwargs:
                Ignored input.
        """
        super(LabelEncoder, self).fit(y)
        return self
    def transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
        """
        Call of the underlying sklearn.transform(y) method.
        Parameters:
            X:
                The input samples of shape [n_samples, n_features].
            y:
                The input targets of shape [n_samples, 1].
            **kwargs:
                Ignored input.
        Returns:
            Original X and encoded y.
        """
        yt = super(LabelEncoder, self).transform(y)
        return X, yt
    def fit_transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
        """
        Call of the underlying sklearn.fit_transform(y) method.
        Parameters:
            X:
                The input samples of shape [n_samples, n_features].
            y:
                The input targets of shape [n_samples, 1].
            **kwargs:
                Ignored input.
        Returns:
            Original X and encoded y.
        """
        return super(LabelEncoder, self).fit_transform(y)
__init__(self)
  
      special
  
    Initialize the object.
Source code in photonai/modelwrapper/label_encoder.py
          def __init__(self):
    """Initialize the object."""
    super(LabelEncoder, self).__init__()
    self.needs_y = True
fit(self, X, y=None, **kwargs)
    Call of the underlying sklearn.fit(y) method.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| X | ndarray | The input samples of shape [n_samples, n_features]. | required | 
| y | ndarray | The input targets of shape [n_samples, 1]. | None | 
| **kwargs | Ignored input. | {} | 
Source code in photonai/modelwrapper/label_encoder.py
          def fit(self, X: np.ndarray, y: np.ndarray = None, **kwargs):
    """
    Call of the underlying sklearn.fit(y) method.
    Parameters:
        X:
            The input samples of shape [n_samples, n_features].
        y:
            The input targets of shape [n_samples, 1].
        **kwargs:
            Ignored input.
    """
    super(LabelEncoder, self).fit(y)
    return self
fit_transform(self, X, y=None, **kwargs)
    Call of the underlying sklearn.fit_transform(y) method.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| X | ndarray | The input samples of shape [n_samples, n_features]. | required | 
| y | ndarray | The input targets of shape [n_samples, 1]. | None | 
| **kwargs | Ignored input. | {} | 
Returns:
| Type | Description | 
|---|---|
| (<class 'numpy.ndarray'>, <class 'numpy.ndarray'>) | Original X and encoded y. | 
Source code in photonai/modelwrapper/label_encoder.py
          def fit_transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
    """
    Call of the underlying sklearn.fit_transform(y) method.
    Parameters:
        X:
            The input samples of shape [n_samples, n_features].
        y:
            The input targets of shape [n_samples, 1].
        **kwargs:
            Ignored input.
    Returns:
        Original X and encoded y.
    """
    return super(LabelEncoder, self).fit_transform(y)
transform(self, X, y=None, **kwargs)
    Call of the underlying sklearn.transform(y) method.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| X | ndarray | The input samples of shape [n_samples, n_features]. | required | 
| y | ndarray | The input targets of shape [n_samples, 1]. | None | 
| **kwargs | Ignored input. | {} | 
Returns:
| Type | Description | 
|---|---|
| (<class 'numpy.ndarray'>, <class 'numpy.ndarray'>) | Original X and encoded y. | 
Source code in photonai/modelwrapper/label_encoder.py
          def transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
    """
    Call of the underlying sklearn.transform(y) method.
    Parameters:
        X:
            The input samples of shape [n_samples, n_features].
        y:
            The input targets of shape [n_samples, 1].
        **kwargs:
            Ignored input.
    Returns:
        Original X and encoded y.
    """
    yt = super(LabelEncoder, self).transform(y)
    return X, yt