Documentation for LabelEncoder
Suitable version of the scikit-learn LabelEncoder for PHOTONAI. Since the pipeline process streams the underlying samples to every transformer, this class is required.
Source code in photonai/modelwrapper/label_encoder.py
class LabelEncoder(SKLabelEncoder):
"""
Suitable version of the scikit-learn LabelEncoder for PHOTONAI.
Since the pipeline process streams the underlying samples to
every transformer, this class is required.
"""
def __init__(self):
"""Initialize the object."""
super(LabelEncoder, self).__init__()
self.needs_y = True
def fit(self, X: np.ndarray, y: np.ndarray = None, **kwargs):
"""
Call of the underlying sklearn.fit(y) method.
Parameters:
X:
The input samples of shape [n_samples, n_features].
y:
The input targets of shape [n_samples, 1].
**kwargs:
Ignored input.
"""
super(LabelEncoder, self).fit(y)
return self
def transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
"""
Call of the underlying sklearn.transform(y) method.
Parameters:
X:
The input samples of shape [n_samples, n_features].
y:
The input targets of shape [n_samples, 1].
**kwargs:
Ignored input.
Returns:
Original X and encoded y.
"""
yt = super(LabelEncoder, self).transform(y)
return X, yt
def fit_transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
"""
Call of the underlying sklearn.fit_transform(y) method.
Parameters:
X:
The input samples of shape [n_samples, n_features].
y:
The input targets of shape [n_samples, 1].
**kwargs:
Ignored input.
Returns:
Original X and encoded y.
"""
return super(LabelEncoder, self).fit_transform(y)
__init__(self)
special
Initialize the object.
Source code in photonai/modelwrapper/label_encoder.py
def __init__(self):
"""Initialize the object."""
super(LabelEncoder, self).__init__()
self.needs_y = True
fit(self, X, y=None, **kwargs)
Call of the underlying sklearn.fit(y) method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray |
The input samples of shape [n_samples, n_features]. |
required |
y |
ndarray |
The input targets of shape [n_samples, 1]. |
None |
**kwargs |
Ignored input. |
{} |
Source code in photonai/modelwrapper/label_encoder.py
def fit(self, X: np.ndarray, y: np.ndarray = None, **kwargs):
"""
Call of the underlying sklearn.fit(y) method.
Parameters:
X:
The input samples of shape [n_samples, n_features].
y:
The input targets of shape [n_samples, 1].
**kwargs:
Ignored input.
"""
super(LabelEncoder, self).fit(y)
return self
fit_transform(self, X, y=None, **kwargs)
Call of the underlying sklearn.fit_transform(y) method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray |
The input samples of shape [n_samples, n_features]. |
required |
y |
ndarray |
The input targets of shape [n_samples, 1]. |
None |
**kwargs |
Ignored input. |
{} |
Returns:
Type | Description |
---|---|
(<class 'numpy.ndarray'>, <class 'numpy.ndarray'>) |
Original X and encoded y. |
Source code in photonai/modelwrapper/label_encoder.py
def fit_transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
"""
Call of the underlying sklearn.fit_transform(y) method.
Parameters:
X:
The input samples of shape [n_samples, n_features].
y:
The input targets of shape [n_samples, 1].
**kwargs:
Ignored input.
Returns:
Original X and encoded y.
"""
return super(LabelEncoder, self).fit_transform(y)
transform(self, X, y=None, **kwargs)
Call of the underlying sklearn.transform(y) method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray |
The input samples of shape [n_samples, n_features]. |
required |
y |
ndarray |
The input targets of shape [n_samples, 1]. |
None |
**kwargs |
Ignored input. |
{} |
Returns:
Type | Description |
---|---|
(<class 'numpy.ndarray'>, <class 'numpy.ndarray'>) |
Original X and encoded y. |
Source code in photonai/modelwrapper/label_encoder.py
def transform(self, X: np.ndarray, y: np.ndarray = None, **kwargs) -> (np.ndarray, np.ndarray):
"""
Call of the underlying sklearn.transform(y) method.
Parameters:
X:
The input samples of shape [n_samples, n_features].
y:
The input targets of shape [n_samples, 1].
**kwargs:
Ignored input.
Returns:
Original X and encoded y.
"""
yt = super(LabelEncoder, self).transform(y)
return X, yt