Simulated Data
Example Code
Here is an example of how to generate simulated data:
Python
import numpy as np
from sklearn.model_selection import ShuffleSplit, RepeatedKFold
from cccpm import CPMRegression
from cccpm.simulation.simulate_simple import simulate_confounded_data_chyzhyk
from cccpm.edge_selection import PThreshold, UnivariateEdgeSelection
X, y, covariates = simulate_confounded_data_chyzhyk(n_samples=1000, n_features=105, link_type='direct_link')
univariate_edge_selection = UnivariateEdgeSelection(edge_statistic='pearson',
edge_selection=[PThreshold(threshold=[0.05, 0.01],
correction=[None])],
t_test_filter=False)
cpm = CPMRegression(results_directory='./tmp/example_simulated_data',
cv=RepeatedKFold(n_splits=2, n_repeats=1, random_state=42),
edge_selection=univariate_edge_selection,
inner_cv=ShuffleSplit(n_splits=2, test_size=0.2, random_state=42),
n_permutations=2,
#atlas_labels='atlas_labels.csv',
select_stable_edges=False)
cpm.run(X=X, y=y, covariates=covariates)
Example Output
Check out the interactive results generated by cccpm: