Results Manager
PermutationManager
calculate_p_values(true_results, perms)
staticmethod
Calculate p-values based on true results and permutation results.
:param true_results: DataFrame with the true results. :param perms: DataFrame with the permutation results. :return: DataFrame with the calculated p-values.
calculate_permutation_results(results_directory, logger)
staticmethod
Calculate and save the permutation test results.
:param results_directory: Directory where the results are saved.
ResultsManager
A class to handle the aggregation, formatting, and saving of results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir
|
str
|
Directory where results will be saved. |
required |
calculate_edge_stability(write=True, best_param_id=None)
Calculate and save edge stability and overlap.
:param cv_edges: Cross-validation edges. :param results_directory: Directory to save the results.
calculate_final_cv_results()
Calculate mean and standard deviation of cross-validation results and save to CSV.
:param cv_results: DataFrame with cross-validation results. :param results_directory: Directory to save the results. :return: Updated cross-validation results DataFrame.
calculate_model_increments()
Calculate model increments comparing full model to a baseline.
:param cv_results: Cross-validation results. :param metrics: List of metrics to calculate. :return: Cross-validation results with increments.
initialize_edges(n_folds, n_features, n_params=None)
staticmethod
Initialize a dictionary to store edges for cross-validation.
:param n_folds: Number of outer folds. :param n_features: Number of features in the data. :return: Dictionary to store edges.
load_cv_results(folder)
staticmethod
Load cross-validation results from a CSV file.
:param folder: Directory containing the results file. :return: DataFrame with the loaded results.
save_network_strengths()
Save network strengths to CSV.
save_predictions()
Save predictions to CSV.
store_metrics(metrics, params, fold, param_id)
Update metrics DataFrame with new metrics and parameters.
:param metrics: Dictionary with computed metrics. :param params: Best hyperparameters from inner cross-validation. :param fold: Current fold number. :return: Updated metrics DataFrame.
store_predictions(y_pred, y_true, params, fold, param_id, test_indices)
Update predictions DataFrame with new predictions and parameters.
:param y_pred: Predicted values. :param y_true: True values. :param params: Best hyperparameters from inner cross-validation. :param fold: Current fold number. :return: Updated predictions DataFrame.
update_results_directory(output_dir)
Determine the directory to save results.
:param output_dir: :return: Results directory path.